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Abstract

Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-
shaped solid body—a penetrator—into a target by using analytic expressions to capture
the effects of the target on the body. Cavity expansion has been implemented as a third-
party library (CavityExpansion) that can be used with explicit, transient dynamics codes.
This document describes the mechanics of the cavity expansion model implemented as a
third-party library. This document also describes the applications interface to CavityEx-
pansion. A set of regression tests has been developed that can be used to test the imple-
mentation of CavityExpansion in atransient dynamics code. The mechanics of these tests
and the expected results from the tests are described in detail.
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CavityExpansion: A Library for Cavity
Expansion Algorithms, Version 1.0

1 Introduction

Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-
shaped solid body (a penetrator) into atarget by using analytic expressions to capture the
effects of the target on the penetrator. The advantage of this approach is that the target
does not need to be discretized. The characteristics of the target are captured by
coefficients in an equation that is used to determine a pressure load on the penetrator. The
pressure load at a point on the penetrator depends on the geometry of the penetrator at that
point and the velocity of that point.

Cavity expansion has been implemented as a third-party library, named CavityExpansion,
that can be used in explicit, transient dynamics codes. This document describes the
implementation of the cavity expansion functionality and the applications interface to
CavityExpansion. This document also discusses verification and validation of
CavityExpansion as a third-party library.

The theoretical background for cavity expansion can be found in References 2, 4, 5, 6, 7,
and 9. References 10, 11, 12, and 16 describe how cavity expansion has been implemented
as a specialized boundary condition in two widely used finite element codes, Pronto3d
[13] and ABAQUS Explicit [1], and used for comparison of computational results with
experiments.

Highlights of this document follow:

» Section 2 describes the implementation of the current functionality in
CavityExpansion. Section 2.1 provides the basic information required for the
numerical implementation of cavity expansion. Sections 2.2 and 2.3 discuss the two
special cases of cavity expansion theory, spherical and cylindrical, respectively.
Section 2.4 explains how the basic theory for cavity expansion can be enhanced for a
numerical implementation by accounting for what are called free-surface effects.

» Section 3 describes the applications interface for CavityExpansion.

» Section 4 gives a complete description of the set of verification problems used to test
the current functionality in CavityExpansion.

» Section 5 references a set of validation problems for cavity expansion.

» Appendix A givesthe basic algorithm flow used for the implementation of cavity
expansion.

The CavityExpansion library is currently used by Alegra[3] and Presto[8].



2 Implementation

This section describes the current numerical implementation of cavity expansion
capabilitiesin the third-party library CavityExpansion.

2.1 Pressure Equation
A typical penetrator and target are shown in Figure 2.1.

54_ Axis of Revolution

|
|
|
|
Penetrator I
|
|

\i/

Figure 2.1. Axisymmetric penetrator normal to target surface.

Target

The pressure at some point on the surface of the penetrator is determined from cavity
expansion theory by a quadratic equation of the form

p=c¢cy+tc v+ czvz, @D

where v isavelocity of aparticlein thetarget. The particle isin contact with the point of
interest on the surface of the penetrator. The three coefficientsin Equation (1), ¢, ¢,, and

c,, reflect the properties of the target. For a given target material, these three parameters

are usually determined from experiments. Cavity expansion is typically used for
axisymmetric bodies, but it can also be applied to wedge-shaped bodies.

In anumerical implementation of cavity expansion, the axisymmetric body (penetrator) is
modeled with a mesh. The surface of the body where the effects of cavity expansion occur
ismodeled by a set of faces, and outward normals can be calculated on these faces. The
axis of revolution of the body can be defined by a minimum of two points on the axis. If
the body does not undergo significant bending, two points are sufficient to model the
location of the axis of revolution of the body as the body impacts atarget. If, however, the
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body undergoes significant bending, the axis of revolution should be broken into a series
of segments (each segment defined by two points) to provide accurate modeling.

For problemsinvolving cavity expansion, it is necessary to specify the location and depth
of the target relative to the penetrator. For some problems, the depth of the target isfinite;
for other problems the target may be a semi-infinite medium. The bounds of the target are
referred to as the free surfaces. The convention is to have these surfaces normal to one of
the global coordinate axes—X, Y, or Z. The normal to the top surface isin the positive
direction of one of the global coordinate axes. The surfaces are then specified by pointson
the global axisnormal to the surfaces of the target. For example, suppose the normal to the
top surface of the target isin the +z-direction and the target is 10 m thick. The top of the

target liesin the xy-plane; the bottom of the target isat z = —10 m. For this particular
problem, the top free surface would be specified as z = 0, and the bottom free surface
would be specified as z = —10. For a semifinite medium, it is possible to specify alarge-
enough depth so that the penetrator never leaves the target during the computational period
of interest. For the CavityExpansion library, the z-axis has been chosen as the normal to

the target for all problems. The model for any penetrator can be easily oriented to account
for this convention.

The model of the body (with points defining the axis of revolution) and the specification of
the target provide the basic information needed for an analysis using a cavity expansion
method. The velocity term in Equation (1) can be computed by one of two methods,
spherical expansion or cylindrical expansion. These two methods make different
assumptions about the motion of particlesin the target. For spherical cavity expansion, it
isassumed that target particles contacting the surface of the penetrator move normal to the
surface of the penetrator. For cylindrical cavity expansion, it is assumed that target
particles contacting the surface of the penetrator move in a direction that is normal to the
axis of the penetrator. These two types of target particle motion are shown in Figure 2.2.

|
| penetrator surface at t
| gﬂ% o penetrator surface at
I t+dt
penetrator | =B - >
axIs | N / Ne
| N/
| &
Va AN ns

| / % V|, = velocity of target particle at
g penetrator surface

Figure 2.2. Target particle motion for spherical and cylindrical expansion.
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In Figure 2.2, the normal for spherical expansion is denoted as n, and the normal for
cylindrical expansion is denoted as n..

Section 2.2 discusses the details of computing v using spherical expansion theory, and
Section 2.3 discusses the details of computing v with cylindrical expansion theory.

When cavity expansion isimplemented as a numerical scheme, it is necessary to account
for the fact that the surface of the penetrator is no longer a smooth surface but a series of

planar facets. These facets could be shell elements or the faces of hexahedral or tetrahedral
elements. In the next sections concerning the implementation of spherical and cylindrical
expansion, the effects of the discretization of the surface are noted.

2.2 Spherical Expansion

For the case of spherical cavity expansion, consider the geometry shown in Figure 2.3.

Point on axis of revolution ¢ P2

(

D

ps @ >

Point on axis of revolution 0
1

Figure 2.3. Spherical radii calculations.

The axis of revolution of the body is defined by points p, and p,. (Because the points can

be represented by vectors, we will denote them as vector quantities.) There are two
quantities of interest for any point p,, on the surface of the penetrator. The first quantity of

interest is the normal to the surface of the penetrator at p,,; denote thisnormal as V. The
second quantity of interest is the spherical radius for the point p,,. The spherical radius dg

for py, isthe distance from p, to the axis of revolution of the body along the vector V..

This distance will be important for calculations of surface effects that are discussed in
Section 2.4.
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To compute the spherical distance, first compute a vector A that lies along the axis of
revolution and extends from point p, to point p;.

A=p-p (2

Points p, and p, can be any two noncoincident points that lie on the axis of revolution.

The point p, should be toward the nose of the body, and the point p, should be toward the
aft end of the body.

Now compute avector B from point p, to py,
B = pp—p, ©)
If ais the unit vector corresponding to A, then the point p, can be computed from
p; = (alB)a+ p, (4)

Point p; and point p, define avector that is orthogonal to the axis of revolution of the
penetrator. Once point p, is computed, it is possible to compute the distance, d, from p,
to point p,,. By using p;, it is possible to compute the vector V , which isthe cylindrical
normal through p, (Figure 2.3). If n. isthe unit vector lying along V ., and ng isthe unit
vector lying along V, the value for the spherical distance dg can be computed from

dg = d./(n.hy) (5

provided that n, Chg# 0. The condition n, [hg# 0 may be violated at the tip of the

penetrator as the surface of the body comes close to the axis of revolution. Thissituationis
easy to detect, and one can use a user-specified value for the radius at the tip of the body to
overcome the problem encountered with the above calculations. For a spherical expansion
problem, a user-specified tip radius would have the effect of rounding the tip of a sharp
nose, such as an ogival nose.

Note that in the preceding derivation, it is assumed that V¢ liesin the plane defined by the
vector V. and the vector B. For the discretized model of the penetrator, the vector V¢, does
NOT necessarily liein the plane defined by V. and B. The following section describes the
modified procedure to obtain d. appropriate for the discrete penetrator model.

The above calculations offer a means of determining the spherical distance dg associated
with the spherical vector V. The spherical vector V is determined from the discretized
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geometry in the finite element model for the penetrator. Consider the discretized profile of
a penetrator shown in Figure 2.4.

~¢—— surface of penetrator

Figure 2.4. Discretized surface of penetrator.

In the profile in Figure 2.4, the line representing the surface of the penetrator has been
broken into straight-line segments. These segments would result from slicing through
hexahedral or tetrahedral elementswith a plane that passes through the body of revolution.
Consider the case of a quadrilateral face (Figure 2.5) arising from hexahedral elements
used in a cavity expansion model.

node 3

node 4

node 2

node 1

Figure 2.5. Quadrilateral face on surface of penetrator.

For aquadrilateral face, an average surface (spherical) normal is calculated. To calculate
this average normal, avector V, is computed from node 1 to node 3, and a second vector
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V, iscomputed from node 2 to node 4. The cross product V, x V, isused to compute the
average normal for the surface. This average normal is used for the spherical normal.

Consider the point p,, shown in Figure 2.4. Let point p,, correspond to a node, nodei,

shared by elements 1 and 2. For element 1, there will be asingle normal, but four velocity
vectors (one at each node). At nodei for element 1, the velocity v used in Equation (1) is

v = v, [h,, (6)

where n isthe spherical normal for element 1 and v, isthe velocity vector at nodei. For

aquadrilateral face, there are four pressures calculated based on Equation (6). These
pressures are then used to calculate nodal point forces for an element based on a
nonuniform pressure distribution. At a given node on the mesh, the nodal point forceisthe
resultant of the nodal point loads summed from surrounding elements. Nodal forces from

element 2 would also be summed into the nodal forces at py,.

The discretization of the surface of the quadrilateral requires that a different method be
used in the calculation of dg from that given in Equation (5). Figure 2.6 shows the

discretized cross section of a penetrator.

discretized
section

surface —p|
of penetrator

Figure 2.6. Cross section of penetrator.

The vector V¢ does not lie in the same plane as that defined by the vector V. and the axis
of revolution of the body. The vector V¢ only approximates the normal at p,. Since we
want the spherical distance to the point on the body p,,, it becomes necessary to project the
unit vector lying along V , which is ng, onto the plane defined by V., the cylindrical
normal, and A, the axis of revolution of the body. If the unit vector lying aong A
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(Equation (2)) is defined as a, then the following operations will produce a good
approximation of dg that will get better as the penetrator mesh is refined.

cos® = |n (A (7)

6 = acos|ng A (8)

d, = dgsin® (9)

d, = d_/(sin®), for sin@#0 (10)

In the above equations, Equation (7) through Equation (10), 8 is the angle between a and
N projected onto the plane defined by n and a. The angle 6 is shownin Figure 2.3.

Similar to the previous calculations for d, the above equations break down for nodes

within asmall distance of thetip. This problem can be corrected for the above calculations
by again specifying atip radius.

We now have sufficient information to compute the pressure for spherical cavity expansion
for any node on the surface of a penetrator where cavity expansion effects are specified.
For the case of spherical cavity expansion, the key equations are Equation (1) and
Equation (6). If, in Equation (6), the value for v is less than zero (the velocity isin the
opposite direction of the outward normal to the body), then the value for the pressureis set
to zero.

2.3 Cylindrical Expansion

For the case of cylindrical expansion, again consider the geometry shown in Figure 2.3.
The point p,, which lies on aline that passes through the point p,, and is normal to the
axis of revolution of the body, can be calculated by using Equations (2) through (4). Once
p; isknown, it is possible to calculate the vector V . (and the related unit vector n.) and

the distance d.. The calculations break down for a point near the axis of revolution of the

body. Thisis similar to the situation encountered in spherical expansion. If apoint is
encountered near the axis of revolution, a user-defined radius can be used at this point. If
the tip of the penetrator is a hemispherical section (defined by a single radius of
curvature), it is possible to use a user-specified value for a point at (or near) thetip of the
penetrator that is equal to the radius of the hemispherical section. This gives continuity for
the value of the cylindrical radius for al points in the hemispherical section.

The velocity quantity in Equation (1) for cylindrical expansion involves both the spherical
and cylindrical vectors, ng and n.. For anode i on a quadrilateral face, the velocity

component in the direction of the spherical normal isfirst computed. Designate this dot
product as v;..

16



Vis = Vv, [y (11)

The quantity v, is then divided by the dot product n, Chg. The quantity v in Equation (1)
is defined as

v = v,/ (n.y). (12)

For cylindrical expansion, v istheradial expansion velocity component of the target at a
point p,,. We can better understand the physical significance of the radial velocity by

considering the quantities shown in Figure 2.7. In thisfigure, the magnitude of the velocity
at point p,, in the direction normal to the surface of the penetrator is

Vg =V, [hg = ||Vp||sin(p, (13)

where @ is the angle shown. The magnitude of the radial velocity of the material particle,
Ve, is

V. = ||Vp||tan(p = v/ (cosq). (14)

& surface of penetrator

inside volume of penetrator
I Ph >

YV
Figure 2.7. Relation between cylindrical and spherical velocities.

Equation (14) breaks down when cos@ = 0, which implies ablunt end to the penetrator.
At ablunt end, there would be no unique direction for radial motion with respect to the
axis of revolution. For this situation, the pressure issimply set to zero in Equation (1). (An
analyst could use the spherical expansion technique for the “blunt” section of the body.)
The pressure is also set to zero if the dot product between the velocity at a point on the
body and the spherical normal is less than zero.

We now have sufficient information to compute the pressure for cylindrical cavity
expansion for any node on the surface of a penetrator. For the case of cylindrical cavity

17



expansion, the key equations are Equation (1), Equation (11), and Equation (12). If, in
Equation (12), the value for v isless than zero (the velocity isin the opposite direction of
the cylindrical outward normal to the body), then the value for pressure is set to zero.

2.4 Free-Surface Effects

In some physical problems, the surface of atarget may disintegrate easily near the impact
zone. The penetrator will go into the target for some distance before the target remains
intact and offers effective resistance to the penetrator. Cavity expansion in afinite el ement
code can be implemented to take into account these surface effects.

Currently, only a simple on-off surface effect isimplemented.

Surface effects are incorporated by using the free surfaces of the target and a layer
definition. A single layer or several layers can reside inside the target, which is defined by
the top and bottom free surfaces. The relation of asingle layer to the target’s free surfaces
isshown in Figure 2.8. The single layer in the figure could consist of several layers (not

A surface normal

top free surface
-
toplayer _ _ _ _ _ _(__ _ _ _ _ _ _ _ _ -
I : target
!_ _ bottomlayer _ _ _ | _ _ _ _ _ _ _ _ _ E
bottom free surface =

Figure 2.8. Target free surfaces and layer.

necessarily contiguous) with different properties. For the examples presented in the
following section, we will assume asingle layer resides within the target. In the
computations for cavity expansion, a check isfirst made to determine whether a node on
the surface of the penetrator lies within alayer. If the node lies outside of alayer, the
pressureis set to zero for that node. If the node lies within the layer, then computations are
made to determine a pressure derived from Equation (1).

If surface effects are important, information about the free surface is used to determine
whether a node on the penetrator is sufficiently far from the free surface for a pressure to
be applied according to Equation (1). For calculations of free-surface effects, consider the
penetrator shown in Figure 2.9. It has entered the target at an oblique angle. A detailed
exampleis presented for calculating the top free surface. Similar calculations will hold for
the effects of the bottom free surface. The detailed example uses the case of spherical
expansion. The same calculations for spherical expansion are easily generalized to the
case of cylindrical expansion.

18



target normal T \
_ \ \ v free surface
|

r
Po

penetrator — g

Figure 2.9. Geometry relations for calculations of surface effects.

Consider the point p,, on the surface of the penetrator for the case of spherical expansion.
Point p, isadistancer (spherical radius) from the axis of revolution of the penetrator. The
distance from p,, to the target surface as measured along the spherical normal to the
surface of the penetrator at p, isl. If | and r satisfy the relation

| —fr >0, (15)

where f .isascale factor that characterizes the surface effects for a particular target, then a

pressure will be calculated at p,, based on Equation (1). If Equation (15) is not satisfied,

then the pressureis set to zero. Equation (15) isasimple test to determine whether a point
on the body of the penetrator is far enough below the free surface of the target to have the

material above the point remain intact. The larger the value of f, the farther a point on the
penetrator must be below the top free surface if the point is to have a pressure from cavity

expansion.
The scale factor f characterizes acritical ratio for I/r . The value for f varies for

different materials. In subsequent sections, the scale factor f will be referred to asa
surface effect coefficient.

Thedistance | is quite easy to compute. Suppose that point p,, islocated at (X, Yy, Z,)-
The target normal for the top free surface isin the z-direction, and the top free surface is
located at z(. If the spherical normal at point p, is ng = (N, Ng, Ng,), then the distance

[ issimply

| = (z:5—2,)/ g, (16)
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for ng, not equal to zero. The computation in Equation (16) is made only if ng, isnonzero
andispositive. If n, ispositive, the spherical normal at p,, is pointing toward the top free

surface, and it makes sense physically to check for the effects of the top free surface. If
one of the other axes was normal to the top free surface, the valuesin Equation (16) would
be changed to reflect this fact.

Asindicated previoudly, the detailed analysis presented above for calculating the surface
effects also applies to the case of cylindrical expansion. For the case of cylindrical

expansion, we would use the cylindrical radius at p,, for r and compute| based on n... The

detailed analysis presented above also applies to the effects of the bottom free surface
(with some sign changes).
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3 Application Programmers Interface

This section describes the Application Programmers Interface (API). Currently, only a
C++ interface is supported. A C and/or FORTRAN interface could easily be added in the
future. The library does not have any parallel support built into it. The parallelization is
left to the host code. All that isrequired isfor the host code to “swap and add” the nodal
forces to give a parallel implementation. Since any parallel code MUST provide this
service for element assemblies, we have not added the coding in the library. Thereis no
limit to the number of CavityExpansion objects that can be constructed.

Rather than use the namespace feature of C++, we have chosen to use a naming
convention to avoid naming conflicts with the host code. The main-level object is named
CavityExpansion. All other objects and enumerations are named with the prefix “CE_".
Aslong as the host code does NOT use “CE_" as a prefix for any of its objects, there
should not be any name conflicts.

All of the functions in the CavityExpansion library return an error code given by the
following enumeration:

CE_ERROR_CODE { NO ERROR=0, | NVALI D _DATA, | NTERNAL ERRCR };

The return error code should always be checked. As soon as the library detects an error, it
exits. This can leave the object improperly initialized or the return datainvalid. If the
analysisis allowed to proceed after the library has returned an error code, the results are
unpredictable but guaranteed to be wrong.

3.1 Constructing a CavityExpansion Object

There is one genera-purpose constructor for the CavityExpansion object. Thereisno
internal data needed for restart, so a general constructor can be used for restart as well.

The prototype for the CavityExpansion constructor is as follows:

Cavi t yExpansi on(
CE_TYPE Type,
i nt Nunber_ Faces,
i nt Nunber Nodes,
const int* Connectivity,
doubl e Ti p_Radi us,
int Num Layers,
const doubl e* Layer_ Surface_Top,
const doubl e* Layer Surface Bottom
const int* Surface Effect Mdel |Ds,
const doubl e* Pressure_Coefficient_1,
const doubl e* Pressure_Coefficient_2,
const doubl e* Pressure Coefficient 3,
int Num Body Axis_Points,
Cavi t yExpansi on: : CE_ ERROR CODE& error );

Definitions of the input parameters are given below.
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- The enumerate variable Type specifies the theory to use, and is one of the itemsin
the enumerated list CE_TYPE.

enum CE_TYPE{ SPHERI CAL, CYLINDRI CAL };

- Theinteger Nunber _Faces isthe number of facesto which the cavity expansion
pressure needs to be computed.

- Theinteger Number _Nodes isthe number of nodes needed to describe the
connectivity for the faces.

- Thearray Connect i vi t y describesthe connectivity between the faces and the
nodes. Thefirst four integersin the array describe the connectivity for face 1; the
second four integers describe the connectivity for face 2; and so forth. Only
quadrilateral faces are allowed for the description of the surface used for cavity
expansion.

- Therea Ti p_Radi us givesthetip radius for the expansion radii described in
Section 2.2 and Section 2.3.

- Theinteger Num Layer s isthe number of layers used to describe the target space.

- Therea array Layer _Sur f ace_Top givesthelocation of the top surface for each
of theNum Layer s layers.

- Therea Layer _Surf ace_Bot t omgivesthe location of the bottom surface for
each of theNum Layer s layers.

- Theinteger array Sur f ace_Ef f ect _Model _I Ds isthelist of integer identifiers
for the surface effect model for each layer. A value of zero indicates that no surface
effect isto be used for this layer.

- Therea array Pressur e_Coef fi ci ent _1 givesthe pressure_coefficient_1 (c,

in Equation 1 of Section 2.1) for each of the Num Layer s layers.

- Therea array Pressure_Coef fici ent_2 givesthe pressure_coefficient_2 (c,
in Equation 1 of Section 2.1) for each of the Num Layer s layers.

- Thereal array Pressur e_Coef fi ci ent _3 givesthe pressure_coefficient_3 (c,
in Equation 1 of Section 2.1) for each of the Num Layer s layers.

- Theinteger Num Body_Axi s_Poi nt s isthe number of pointsthat will be used to
describe the body axis. In version 1.0, this must be two (2). In future versions, we
will support an arbitrary number of body axis points so the analysts can better
resolve the body axis.

3.2 Adding Surface Effect Models

Surface effect models are added using the function Add_Sur f ace_Ef f ect _Model . The
prototype for this function is as follows:

CE_ERROR_CODE
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Cavi t yExpansi on: : Add_Sur face_ Ef fect Model (
CE_SURFACE_EFFECT _TYPE type,
int |D,
doubl e* parans );

Definitions of the input parameters are given below.

- Theenumerated variablet ype specifiesthe surface effect model to use, and isone
of the items from the enumated list CE_SURFACE_EFFECT_TYPE.

enum CE_SURFACE_EFFECT _TYPE{ NONE=0, S| MPLE_ON OFF};

- Theinteger | DisaPOSITIVE integer for thismodel. This| Dis used to connect the
modelsto the layers. The | D used here should appear in the array
Sur f ace_Ef f ect _Mbdel _I Ds used to create the cavity expansion object.

- Thearray par ans isarea array of parameters that is dependent on the model type.
The array par ans isdimensioned so that it will hold all of the parameters used in
the surface effects model. For the SI MPLE_ON_OFF model, there are four
parameters:

par anf 0] = free-surface top
par anf 1] = free-surface bottom
par ani 2] = free-surface top coefficient

par anf 3] = free-surface bottom coefficient

See Section 2.4 for a description of the parameters for the SI MPLE_ON_OFF model.

3.3 Initializing the CavityExpansion Object

Cavity expansion must be initialized before calling Conput e_For ces ( Section 3.4) and
after adding all of the surface effect models. The initialization phase connects the layers
and the surface effect models, precomputes the expansion radii, and sets up the memory
for the object that will be needed in Conput e_For ces.

The prototype for the initialization is as follows:
CE Error_Code
Cavi tyExpansion::lnitialize(

const doubl e* coordi nat es,
const doubl e* body_axis_points);

Definitions of the input parameters are given below.

- Therea array coor di nat es isan array of initial coordinate positions ordered (X,
y, 2) for node 1, (X, y, 2) for node 2, and so forth.

- Therea array body_axi s_poi nt s isan array of positions ordered (X, Y, 2) for
body axis node 1, (X, y, 2) for body axis node 2, and so forth.
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3.4 Computing Nodal Forces

The nodal forces exerted by the target on the penetrator are computed in
Conput e_For ces. The prototype for this function is as follows:

CE _Error_Code

Cavi t yExpansi on: : Conput e_For ces(
const doubl e* coordi nates,
const doubl e* vel ociti es,
const doubl e* body_axis_points,
doubl e* forces );

Definitions of the input parameters are given below.

Thereal array coor di nat es isan array of current nodal positions ordered (X, v, 2)
for node 1, (X, y, 2) for node 2, and so forth.

Thereal array vel oci ti es isan array of velocities ordered (X, y, 2) for node 1, (X,
Yy, 2) for node 2, and so forth.

Thereal array body axis pointsisan array of positions ordered (X, y, ) for body
axisnode 1, (X, Y, 2) for body axis node 2, and so forth.

Thereal array f or ces contains the nodal forces exerted by the target on the
penetrator nodes. Thearray f or ces isreturned on exit from this function. Because
the array is zeroed upon entering the function, the array CANNOT be used for
accumul ating the nodal forces.
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4  Verification

This section describes the verification problems that are used to test the functionality of
the CavityExpansion library. The current tests are listed below and discussed in detail in
Section 4.1 through Section 4.7.

» Block with spherical expansion, constant pressure coefficient only

Block with spherical expansion, constant pressure and linear velocity terms only

» Block with cylindrical expansion, constant pressure coefficient only

» Block with cylindrical expansion, constant pressure and linear velocity terms only
* Block with spherical expansion, constant pressure, multiple layers

* Block with cylindrical expansion, constant pressure, multiple layers

» Block with spherical expansion, constant pressure, top and bottom on-off surface
effects

4.1 Block, Spherical CE, Constant Coefficient
Only
This verification problem uses a block with an initial velocity. The block impacts the

target and comes to rest after it penetrates the target by a certain distance due to a constant
pressure from a spherical cavity expansion boundary condition.

4.1.1 Capabilities Tested

This problem tests spherical expansion with a constant pressure coefficient term only.
Only the ¢, term in Equation (1) is nonzero. Calculation of the spherical normal and a
constant pressure is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.

4.1.2 Mechanics of Problem
This problem uses a 1-inch x 1-inch x 1-inch block made of steel. Steel has amass density

of 7.324 x 10~ Ibm/in’. The block has an initial velocity of 100 in/sec in the negative z-
direction (Figure 4.1). The bottom of the block isinitially at z = 0, and the top of the
block isinitially at z = 1. The block strikesthetarget at timet = 0. Only the constant
term, c,, in the quadratic equation used for cavity expansion is set to a nonzero value of
7.324 psi.

25



Target

Figure 4.1. Block and target geometry.

The mesh used in this verification problemisa?2 x 2 x 2 element block constructed of
eight-node hexahedral elements. One edge of the block lies along the positive x-axis, one
edge lies along the positive y-axis, and athird lies along the positive z-axis. There are

planes of interior nodesat x = 2/3 inch,y = 2/3 inch,and z = 2/3 inch. The exterior
faces of the elementsare 2/3 inch x 2/3 inch, 1/3 inch x 2/3 inch, and 1/3 inch x
173 inch. The symmetry boundary condition u, = 0 isused on the plane x = 0, and the

symmetry boundary condition u, = 0 isused ontheplaney = 0.

4.1.3 Analytic Results

The result of setting only the constant term in the quadratic equation for cavity expansion
to anonzero value is a constant pressure over time on the bottom surface of the block. The
acceleration of the block, once it strikes the target, can be easily computed from the
equation

a=F/M, a7

where F isthe force on the block due to the constant pressure term and M is the total mass

of the block. By integrating Equation (17) with respect to time, one obtains the velocity of
the block as a function of time as

v = v, +(F/M), (18)

where v, istheinitial velocity of the block. By integrating once more with respect to time,
one obtains the displacement of the block as afunction of time as

u = vyt +(F/M)(t°/2), (19)

where it is assumed that the initial displacement for any point on the block is zero. The
block is at rest when the velocity v is zero. The time at which the block comestorest is
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te = —vy(M/F). (20)

Substituting the value for the time at which the velocity is zero, t, into Equation (19)
gives the depth of penetration of the block into the the target.

For ablock with unit dimensions, the total force on the block is 7.324 |b since the value

for ¢, is7.324 psi and the cross-sectional area of the block is 1 in”. Since the block is

steel with amass density of 7.324 x 107" lbm/in3, the total mass of the block is

7.324 x 104 Ibm. The time at which the block comestorestis 1 x 10_2 sec; the block
penetrates the target to a depth of —0.5 inch.

4.1.4 Comparison of Analytic and Computed Results

The cross-sectional area of the block will deform dlightly due to Poisson effects as the
block contacts the target. However, this effect is very small, and the cross-sectional area of

the block can be treated as constant (1 inz) over the period in which the block contacts the
target and comesto rest. The block should follow the analytic behavior closely. Figure 4.2
shows the displacement as a function of time for any point on the block. For node 1

(locatedat x = 0,y = 0,and z = 1), the predicted displacement in the z-direction at

timet = 10.5 x 107 secis —0.499992 inch. This result is from Alegra. The numerical
and analytic results show good agreement.
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Block, spherical expansion, constant pressure

Block displacement as a function of time

Z—displacement of block (in.)
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Figure 4.2. Displacement as a function of time for block impacting
target; spherical expansion, constant pressure term only.

4.2 Block, Spherical CE, Constant and Linear
Coefficients

This verification problem uses a block with an initial velocity. The block impacts the

target and comes to rest after it penetrates the target by a certain distance due to a pressure

from a spherical cavity expansion boundary condition. This problem is the same as the

problem presented in Section 4.1, except that the pressure in this problem includes that
due to the linear velocity term in addition to the constant pressure term.

4.2.1 Capabilities Tested

This problem tests spherical expansion with a constant coefficient pressure term and the
pressure term that is linear in the velocity. Both the ¢, and ¢, termsin Equation (1) are

nonzero for this problem; the ¢, term in Equation (1) is zero for this problem. Calculation
of the spherical normal and the pressure with constant and linear termsis tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.2.2 Mechanics of Problem

The mechanics of this problem is the same as that for the problem presented in Section
4.1, except that this problem has anonzero value for ¢, in addition to a nonzero value for

C,- The pressure on the block arises not only from the constant pressure term but also from

the linear velocity term. The value for the coefficient ¢, issetto 0.07324 Ib-sec/in”.

4.2.3 Analytic Results

For this particular verification problem, the motion of the block is described by the
differential equation

2
Mﬂ du

= —cC (22)
dt

3 0_01&’

where M isthe total mass of the block and u isthe displacement of the block. Since we are
working with unit areas for the surface of the block, the terms on the right-hand side in
Equation (21) represent force terms. Equation (21) is rewritten is a differential equation
with the homogeneous solution

u = Ae(—cl/M)t

(22)
and the particular solution
where A and A, are constants determined from initial conditions. Theinitial conditions

are that the displacement of the block is zero and theinitial velocity isv, att = 0. The
initial conditionsyield

A = —(vy+c,/cp)/(M/c) (24)
and
Ay = A, (25)

which resultsin

(—c,/ M)t

u=(vy+cy/c))/(M/c))(1-e ) —(cy/Ct (26)

as the expression for the displacement as afunction of time. The block is at rest when
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= 0, (27)
which occurs at time

/C
- 0 %% r
ty = H:IDInEl/O_|_CO/CIE. (28)

By substituting the value for t; into Equation (26), one can obtain the displacement for the
block at the point whereit isat rest in the target.

For atotal mass of 1 lbm, an initial velocity of 100 in/sec in the minus z-direction, and
values of 7.324 Ib/in” and 0.07324 Ib-sec/in’ for ¢, and c,, respectively, thetime at

which the block comes to rest is 6.9315 x 10 sec. The block penetrates the target to a
depth of —3.0685 x 10™" inch.

4.2.4 Comparison of Analytic and Computed Results

The cross-sectional area of the block will deform slightly due to Poisson effects as the
block contacts the target. However, this effect is very small, and the cross-sectional area of

the block can be treated as constant (1 inz) over the period in which the block contacts the
target and comes to rest. The block should follow the analytic behavior closely. Figure 4.3
shows the displacement as a function of time for any point on the block. For node 1

(locatedat x = 0,y = 0, z = 1), the predicted displacement in the z-direction at thetime

the block comestorest (t = 10.5 x 107 Sec) is —3.0667979 x 107" inch. Thisresult is
from Alegra. The numerical and analytic results show good agreement (within 0.055%).
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Block, spherical expansion, constant and linear pressure

Block displacement as a function of time
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Figure 4.3. Displacement as a function of time for block impacting
target; spherical expansion, constant pressure and linear velocity
terms only.

4.3 Block, Cylindrical CE, Constant Coefficient
Only

This verification problem uses ablock with an initial velocity in the x-direction. The block

is embedded in the target and comes to rest after a certain distance due to a constant

pressure from acylindrical cavity expansion boundary condition. The nature of cylindrical

expansion requires that the block be embedded in the target and moved in adirection
orthogonal to the z-axis, which is the assumed target normal.

4.3.1 Capabilities Tested

This problem tests cylindrical expansion with a constant pressure coefficient term only.
Only the ¢, term in Equation (1) is nonzero. Calculation of the cylindrical normal and a

constant pressure is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.3.2 Mechanics of Problem

This problem uses a 1-inch x 1-inch x 1-inch block made of steel. Steel has amass density
of 7.324 x 10~ Ibm/in’. The block has an initial velocity of 100 in/sec in the positive x-
direction. The bottom of the block isinitially at z = 0, and the top of the block isinitially

at z = 1. Thetop of thetarget isat z = 10 inches, and the bottom of the target is at

z = —10 inches. The block is embedded in the target. A pressureis applied to the block in
the minus x-direction beginning at time zero dueto cylindrical cavity expansion. Only the
constant term, ¢, in the quadratic equation used for cavity expansion is set to a nonzero

value; the constant termis set to 7.3324 psi.

The mesh used in this verification problemisa2 x 2 x 2 element block constructed of
eight-node hexahedral elements. One edge of the block lies along the positive x-axis, one
edge lies along the positive y-axis, and athird lies along the positive z-axis. There are

planesof interior nodesat x = 2/3 inch,y = 2/3 inch,and z = 2/3 inch. The exterior
faces of theelementsare 2/3 inch x 2/3 inch, 1/3 inch x 2/3 inch, and 1/3 inch x
1/3 inch. The symmetry boundary condition u, =0 isused onthe plane x = 0, and the

symmetry boundary condition u, = 0 isused ontheplane z = 1. Node 7, whichis
locatedat x = 1,y = 0,and z = 1, isused to track the motion of the block.

4.3.3 Analytic Results

The result of setting only the constant term in the quadratic equation for cavity expansion
to anonzero value is a constant pressure over time on the surface of the block with a

normal in the x-direction. The acceleration of the block beginning at timet = 0 can be
easily computed from the equation

a=F/M, (29)

where F isthe force on the block due to the constant pressure term and M is the total mass
of the block. By integrating Equation (29) with respect to time, one obtains the velocity of
the block as afunction of time as

v = v, +(F/M), (30)

where v, istheinitial velocity of the block. By integrating once more with respect to time,
one obtains the displacement of the block as afunction of time as

u = vyt +(F/M)(t/2), (31)

where it is assumed that the initial displacement for any point on the block is zero. The
block is at rest when the velocity v is zero. The time at which the block comesto restis
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te = —vy(M/F). (32)

Substituting the value for the time at which the velocity is zero, t;, into Equation (32)
gives the depth of penetration of the block into the the target.

For ablock with unit dimensions, the total force on the block is 7.324 |b since the value

for ¢, is7.324 psi and the cross-sectional area of the block is 1 in”. Since steel has amass

density of 7.324 x 107" lbm/in3, the total mass of the block is 7.324 x 10~ Ibm. Thetime

at which the block comestorestis 1 x 10_2 sec; the block moves adistance of 0.5 inch
through the target in the x-direction.

4.3.4 Comparison of Analytic and Computed Results

The cross-sectional area of the block will deform slightly due to Poisson effects as the
block moves through the target. However, this effect is very small, and the cross-sectional

area of the block can be treated as constant (1 inz) over the period in which the block is
moving through the target. The block should follow the analytic behavior closely. Figure
4.4 shows the displacement as afunction of time for any position on the block. For node 7
(locatedat x = 1,y = 0, z = 1), the predicted displacement at timet = 10.5 x 107 sec
1S 0.499990 inch. Thisresult isfrom Alegra. The numerical and analytic results show
good agreement.
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Block, cylindrical expansion, constant pressure

Block displacement as a function of time
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Figure 4.4. Displacement as a function of time for block moving
through target; cylindrical expansion, constant pressure term
only.

4.4 Block, Cylindrical CE, Constant and Linear
Coefficients

Thisverification problem uses ablock with an initial velocity in the x-direction. The block
is embedded in the target and comes to rest after a certain distance due to a pressure from
acylindrical cavity expansion boundary condition. This problem is the same as the
problem presented in Section 4.3, except that the pressure in this problem includes that
due to the linear velocity term in addition to the constant pressure term. The nature of
cylindrical expansion requires that the block be embedded in the target and moved in a
direction orthogonal to the z-axis, which is the assumed target normal.

4.4.1 Capabilities Tested

This problem tests cylindrical expansion with a constant pressure coefficient and the
pressure term that is linear in the velocity. Both the ¢, and ¢, termsin Equation (1) are

nonzero for this problem; the ¢, termin Equation (1) is zero for this problem. Calculation

of the spherical normal, the cylindrical normal, and the pressure with constant and linear
termsis tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.

34



4.4.2 Mechanics of Problem

The mechanics of this problem is similar to that for the problem presented in Section 4.3,
except that this problem has a nonzero value for ¢, in addition to a nonzero value for c,,.

The pressure on the block arises not only from the constant pressure term but also from the
linear velocity term. The determination of the pressure due to the linear velocity termis
slightly more complicated than that for the analogous spherical cavity expansion problem
described in Section 4.2. To determine the pressure arising from the linear velocity term,
consider the block geometry with normals shown in Figure 4.5.

yA Ng
___y=1
n
/ c v
T y=23 O
—» Ns
z—axisC/ - > X

Figure 4.5. Normals for block for cylindrical expansion.

The velocity v used to calculate the pressure from the velocity at the node v, is given by
v = v, [hy/(ng[hy), (33

where n is the spherical normal at the node and n., is the cylindrical normal at the node.

For this particular problem, the body axis for the block lies along the z-axis. Although the
spherical normals are all the same for the faces of interest for this problem (1, 0, 0), the

cylindrical normals vary with the location of the nodes. For the nodeslocated at y = 0,
the cylindrical normals of interest are (1, 0, 0), and the product n_ [h is 1.0. For the nodes

located at y = 2/ 3, the cylindrical normals of interest are (1/ /1379, 2/3/ /1379, 0),
and the product n, [hg is 1/4/13/9. For the nodeslocated at y = 1, thecylindrical

normals of interest are (/2/2, /272, 0), and the product n_ Chy is 4/2/2. If v, isthe

velocity alongthefaceat x = 1 at any instant, we can approximate the pressure along this
face as afunction of y with asimple quadratic as
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P = ¢,V,(0.33431y” + 0.079905y + 1.0). (34)

If we integrate the function for pressure over the face of the block normal to the x-
directionfromy = 0toy = 1 andfrom z = 0 to z = 1, then the total force on the
block normal to the x-directionis F, = 1.15139¢c,v..

If the value of the coefficient ¢, issetto 0.07324/1.15139, which is 0.063610, then the

force in the x-direction as afunction of time will be the same as that for the spherical
expansion problem in Section 4.2, and the behavior for this problem will be the same as

that for the problem in Section 4.2. For the problem in Section 4.2, the value for ¢, is

0.07324 Ib-sec/in".

4.4.3 Analytic Results

For this particular verification problem, the motion of the block is described by the
differential equation

2
du cu

MOltz = —C~Cig (35)

where M isthe total mass of the block and u isthe displacement of the block. Since we are
working with unit areas for the surface of the block, the terms on the right-hand side in
Equation (35) represent force terms. As indicated in the previous section, however, the

value for ¢; must be adjusted to account for the geometry and configuration of the

cylindrical normalsin order to use clg—tJ directly asaforce term. Equation (35) is
rewritten isadifferential equation with the homogeneous solution

U = Ae(—cl/M)t

(36)
and the particular solution

u= (—cy/c)t+ A, (37)
where A and A, are constants determined from initial conditions. Theinitial conditions

are that the displacement of the block is zero and the initial velocity isv, att = 0. The
initial conditionsyield

= —(v, +cy/ )/ (M/c)) (38)

and
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A, = A, (39)

which resultsin

(—c,/ M)t

u= (vy+c,/c))/(M/c))(1-e ) —(cy/Ct (40)

as the expression for the displacement as a function of time. The block is at rest when
— =0, (41)

which occurs at time

_ _EMD [ Cy/ C; C
LTy RN “2

By substituting the value for t; into Equation (40), one can obtain the displacement for the
block at the point whereit isat rest in the target.

For atotal mass of 1 lbm, an initial velocity of 100 in/sec in the minus z-direction, and

values of 7.324 psi and 0.063610 Ib-sec/in’ for c, and c,, respectively, the time at which

the block comesto rest is 6.9315 x 10~ sec. The block moves through the target a
distance of —3.0685 x 10~ inch.

4.4.4 Comparison of Analytic and Computed Results

The cross-sectional area of the block will deform dlightly due to Poisson effects as the
block moves through the target. However, this effect is very small, and the cross-sectional

area of the block can be treated as constant (1 inz) over the period in which the block is
moving through the target. The block should follow the analytic behavior closely. Figure
4.6 shows the displacement for any point as afunction of time for any point on the block.

For node 7 (locatedat x = 1,y = 0, z = 1), the predicted displacement at time

t = 10.5x 10~ secis0.3049608 inch. This result isfrom Alegra. The numerical and
analytic results show good agreement.
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Block, cylindrical expansion, constant and linear pressure
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Figure 4.6. Displacement as a function of time for block moving
through target; cylindrical expansion, constant pressure and linear
velocity terms only.

4.5 Block, Spherical CE, Constant Coefficients,
Multiple Layers

This verification problem uses ablock with an initial velocity. The block impacts the
target and comes to rest after it penetrates the target by a certain distance due to a pressure
from aspherical cavity expansion boundary condition. This problem isthe same asthe one
described in Section 4.1, except that the problem in this section (Section 4.5) uses three
layers rather than one layer to describe the layer structure inside the target. For this
particular problem, all layers have the same properties. The behavior for this problem is
exactly the same as that for the problem in Section 4.1.

45.1 Capabilities Tested

This problem tests spherical expansion with a constant pressure coefficient only and
multiple layersinside the target. Calculation of the spherical normal and the pressure for a
multilayer problem is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.5.2 Mechanics of Problem
The mechanics for this problem is the same as that defined in Section 4.1.2, except that

this problem uses three layers instead of one inside the target. For all layers, the value for
C, is7.324 psi.

Thelayersrangefrom z = 0.0 inchto z = —0.2 inch, from z = —-0.2 inchto z = —-0.4
inch, and from z = —0.4 inchto z = —0.6 inch. The block passes completely through the
first two layers and comesto rest in the third layer ranging from z = —0.4 inch to

z = —0.6 inch.

4.5.3 Analytic Results
The analytic results for this problem can be obtained by using the resultsin Section 4.1.3.

45.4 Comparison of Analytic and Computed Results

Computed results for this problem compare to the results shown in Figure 4.2. For node 1
(locatedat x = 0,y = 0, z = 1), the predicted displacement in the z-direction at time

t = 10.5x 10~ secis —0.499992 inch. Thisresult is from Alegra. The numerical and
analytic results show good agreement.

4.6 Block, Cylindrical CE, Constant Coefficients,
Multiple Layers

This verification problem uses a block with an initial velocity. The block moves through
the target and comes to rest after a certain distance due to a pressure from a spherical
cavity expansion boundary condition. This problem is the same as the one described in
Section 4.3, except that the problem in this section (Section 4.6) uses two layers rather
than one layer to describe the layer structure inside the target. For this particular problem,
both layers have the same properties. The behavior for this problem is exactly the same as
that for the problem in Section 4.3.

4.6.1 Capabilities Tested

This problem tests cylindrical expansion with a constant pressure coefficient only and
multiple layersinside the target. Calculation of the spherical normal and the pressure for a
multilayer problem is tested.

Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.
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4.6.2 Mechanics of Problem

The mechanics for this problem is the same as that defined in Section 4.3.2, except that
this problem uses two layers instead of one layer inside the target. For both layers, the

valuefor ¢, is7.324 psi.

Thelayersrangefrom z = 2.0 inchesto z = 0.5 inch and from z = 0.5 inch to
= 2.0 inches. Since thetop of theblock isat z = 1.0 inch and the bottom of the block

isat z = 0.0 inch, the block isin both layers. The block remainsin both layers since the
motion of the block isin the x-direction.

4.6.3 Analytic Results

The analytic results for this problem can be obtained by using the resultsin Section 4.3.3.

4.6.4 Comparison of Analytic and Computed Results

Computed results for this problem compare to the results shown in Figure 4.4. For node 7
(located at x = 1,y = 0, z = 1), the predicted displacement in the x-direction at time

t = 10.5x 10~ secis 0.499990 inch. This result isfrom Alegra. The numerical and
analytic results show good agreement.

4.7 Block, Spherical CE, Constant Pressure,
Surface Effects

This verification problem uses a block with an initial velocity. The block impacts the
target and experiences a constant pressure due to a cavity expansion boundary condition.

Only the ¢, termin Equation (1) is nonzero. A surface effect coefficient, the scale factor f.

in Equation (15), is specified for atop on-off surface effect and for abottom on-off surface
effect. The top surface effect coefficient does not influence the motion of the block asit
impacts the surface because the normals for the faces on the bottom of the block are
opposite to the surface normal for the target. For the on-off surface effect to be enforced
for agiven face, the normal to the face and the target surface normal of interest (lower- or
upper-target surface normal) must first have components in the same direction. The
bottom surface of the target and the bottom surface effect coefficient are set so that the
bottom surface effect does influence the motion of the block. The bottom surface effect is
such that, at some depth of penetration of the block, the bottom surface effect turns off the
pressure on the block, and the block continues its motion at a constant vel ocity.

4.7.1 Capabilities Tested

This problem tests spherical expansion with a constant pressure coefficient only and top
and bottom surface effects.
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Eight-node hexahedral elements and symmetry boundary conditions are used to define the
numerical problem.

4.7.2 Mechanics of Problem
This problem uses a 1-inch x 1-inch x 1-inch block made of steel. Steel has amass density

of 7.324 x 10 Ibm/in’. The block has an initial velocity of 100 in/sec in the negative z-
direction. The bottom of the block isinitialy at z = 0, and the top of the block isinitially
at z = 1. Theblock strikes the target at time t = 0. Only the constant term, ¢, in the

guadratic equation used for cavity expansion is set to a nonzero value; the constant termis
set to 7.324 psi.

A value of 10.0 isused to specify the scale factor for the top surface effect. The top surface
effect never influences the motion of the block because the normals on the bottom surface
of the block (which are given by (0, 0, —1)) are in the opposite direction of the normal to
the top surface of the target, which is given by (0O, O, 1). A value of 10.0 isalso used to
specify the scale factor for the bottom surface effect. The bottom surface of thetarget is set

to z = —10 inches, and the bottom of the layer inthetargetisset at z = —0.5 inch. The
tip radiusis set to 0.01 inch. When the bottom surface of the block has penetrated to a
depth of z = —0.4 inch, the bottom surface effect turns off the constant pressure term. The
distance| (see Section 2.4) to the bottom of the layer when z = —0.4 inchis0.1 inch. The
scale factor of the bottom surface effect, f, timesthetip radius, r, givesavalue of 0.1 inch

(fgr = 10.0 x 0.01 inch). Once the block displacement is greater than z = —0.4, the
relation given in Equation (15) of Section 2.4 (| — fr > 0) isno longer satisfied, and the

pressure due to cavity expansion is set to zero. The velocity at this point remains constant,
and the displacement of any point on the block is described by alinear function.

The mesh used in this verification problemisa?2 x 2 x 2 element block constructed of
eight-node hexahedral elements. One edge of the block lies along the positive x-axis, one
edge lies along the positive y-axis, and athird lies along the positive z-axis. There are

planes of interior nodesat x = 2/3 inch,y = 2/3 inch,and z = 2/3 inch. The exterior
faces of theelementsare 2/3 inch x 2/3 inch, 1/3 inch x 2/3 inch, and 1/3 inch x
1/3 inch. The symmetry boundary condition u, =0 isused onthe plane x = 0, and the

symmetry boundary condition u, = 0 isused ontheplaney = 0.

4.7.3 Analytic Results

The result of setting only the constant term in the quadratic equation for cavity expansion
to anonzero valueis aconstant pressure over time on the bottom surface of the block. The
acceleration of the block, once it strikes the target, can be easily computed from the
equation
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a=F/M, (43)

where F isthe force on the block due to the constant pressure term and M is the total mass
of the block. By integrating Equation (43) with respect to time, one obtains the velocity of
the block as a function of time as

v = v, +(F/M)t, (44)

where v, istheinitial velocity of the block. By integrating once more with respect to time,
one obtains the displacement of the block as a function of time as

u = vyt +(F/M)(t°/2), (45)

where it is assumed that the initial displacement for any point on the block is zero. The
pressure on the block becomes zero when the block penetrates the target by a certain depth

uy, because of the bottom surface effect. Thetime t,, at which uy, isreached isthe
appropriate root of

-Vt A/vo2 +2Fu,/M

t = F/M (40)
The final velocity for the block is
Vp = Vo + (F/M)t,, (47)
and the displacement of the block for any timet >t is
U = up+Vvp(t—ty). (48)

For this particular problem, the block displaces by 0.4 inch into the target at time
t = 5.522786 x 10 sec and has avelocity of v = —44.7214 in/sec. By using Equation

(48), the predicted displacement at time t = 10.5 x 107 sec, the termination time for the
problem, should be —0.622236 inch.

4.7.4 Comparison of Analytic and Computed Results

The cross-sectional area of the block will deform slightly due to Poisson effects as the
block contacts the target. However, this effect is very small, and the cross-sectional area of

the block can be treated as constant (1 inz) over the period in which the block contacts the
target and comesto rest. The block should follow the analytic behavior closely. Figure 4.7
shows the displacement as a function of time for any point on the block. For node 1

(locatedat x = 1,y = 0, z = 1), the predicted velocity when the block penetratesto a
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depth of —0.4 inch is—44.7203 in/sec. For node 1, the predicted displacement in the z-

directionat timet = 10.5 x 10~ secis—0.62239 inch. This result isfrom Alegra. The
numerical and analytic results show good agreement.

Block, spherical, constant pressure, simple on/off

Block displacement as a function of time
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Figure 4.7. Displacement as a function of time for block impacting
target; spherical expansion, constant pressure term only, simple on-
off surface effects.
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5 Validation

Cavity expansion has been validated as an analysis tool by comparing numerical and
experimental results for a number of problems. Validation results are given in References
11, 14, 15, and 16.
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11.
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Appendix A: Basic Algorithmic Flow

The basic algorithmic flow used for the implementation of cavity expansion is given
bel ow.

Col l ect input information
Type of cavity expansion (spherical or cylindrical)
Target normal axis (X, Y, or 2)
Free surface top | ocation
Free surface bottom |l ocation
Layer surface top |ocation
Layer surface bottom | ocation
Pressure coefficients c0, cl1, c2
body axis point 1
body axis point 2
Compute current body axis orientation: A = pl - p2

Loop over faces defining surface with cavity expansion
effects

Col l ect information for nodes defining faces
Comput e spherical nornmal to face
Loop over nodes defining face
pressure = 0.0
If node is within | ayer
Vs = v dot ns
| f SPHERI CAL cavity expansion
If Vs > tol erance
pressure = c0O + cl Vs + c2 Vs Vs

If top surface effect = true and normal pointing to
top free surface

If I/r <fs, pressure =0
Endif test on top free surface

If bottomsurface effect = true and normal pointing
to bottom free surface

If I/r <fs, pressure =0
Endif test on bottom free surface

Endif test on Vs
Endi f test for SPHERI CAL expansi on

If CYLINDRICAL cavity expansion

a7



Compute Vc
Commput e dot _normals = nc dot ns
If dot _nornals > tol erance
Vc = Vs x dot_nornal s
If Vc > tol erance
pressure = c0 + ¢l Vc + ¢c2 Vc Vc

If top surface effect = true and nornmal pointing
to top free surface

If I/r < fs, pressure 0
Endif test on top free surface

If bottom surface effect = true and norma
pointing to bottomfree surface

If I/r <fs, pressure =0
Endif test on bottomfree surface
Endi f test on Vc
Endif test on dot_normals
Endi f test for CYLI NDRI CAL expansion
Endif test to determ ne node in | ayer
End | oop over nodes on face

Cal cul ate nodal forces at each node on face from pressure
di stribution.

End | oop over faces
Sum el enment node forces into global force array

End cavity expansion cal cul ati ons.
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